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Abstract

State-dependent Riccati equation (SDRE) techniques are rapidly emerging as general design
and synthesis methods of nonlinear feedback controllers and estimators for a broad class of
nonlinear regulator problems. In essence, the SDRE approach involves mimicking standard
linear quadratic regulator (LQR) formulation for linear systems. In particular, the technique
consists of using direct parameterization to bring the nonlinear system to a linear structure
having state-dependent coefficient matrices. Theoretical advances have been made regarding
the nonlinear regulator problem and the asymptotic stability properties of the system with
full state feedback. However, there have not been any attempts at the theory regarding the
asymptotic convergence of the estimator and the compensated system. This paper addresses
these two issues as well as discussing numerical methods for approximating the solution to the
SDRE. The Taylor series numerical methods works only for a certain class of systems, namely
with constant control coefficient matrices, and only in small regions. The interpolation numerical
method can be applied globally to a much larger class of systems. Examples will be provided
to illustrate the effectiveness and potential of the SDRE technique for the design of nonlinear
compensator-based feedback controllers.

1 Introduction

Linear quadratic regulation (LQR) is a well established, accepted, and effective theory for the
synthesis of control laws for linear systems. However, most mathematical models for biological
systems, including HIV dynamics with immune response [4, 17], as well as those for physical
processes, such as those arising in the microelectronic industry [3] and satellite dynamics [22], are
inherently nonlinear. A number of methodologies exist for the control design and synthesis of these
highly nonlinear systems. These techniques include a large number of linear design methodologies
[33, 15] such as Jacobian linearization and feedback linearization used in conjunction with gain
scheduling [25]. Nonlinear design techniques have also been proposed including dynamic inversion
[27], recursive backstepping [18], sliding mode control [27], and adaptive control [18]. In addition,
other nonlinear controller designs such as methods based on estimating the solution of the Hamilton-
Jacobi-Bellman (HJB) equation can be found in a comprehensive review article [5]. Each of these
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techniques has its set of tuning rules that allow the modeler and designer to make trade-offs between
control effort and output error. Other issues such as stability and robustness with respect to
parameter uncertainties and system disturbances are also features that differ depending on the
control methodology considered.

One of the highly promising and rapidly emerging methodologies for designing nonlinear con-
trollers is the state-dependent Riccati equation (SDRE) approach in the context of the nonlinear
regulator problem. This method, which is also referred to as the Frozen Riccati Equation (FRE)
method [11], has received considerable attention in recent years [9, 10, 12, 26]. In essence, the
SDRE method is a systematic way of designing nonlinear feedback controllers that approximate
the solution of the infinite time horizon optimal control problem and can be implemented in real-
time for a broad class of applications. Through extensive numerical simulations, the SDRE method
has demonstrated its effectiveness as a technique for, among others, controlling an artificial hu-
man pancreas [23], for the regulation of the growth of thin films in a high-pressure chemical vapor
deposition reactor [3, 2, 30], and for the position and attitude control of a spacecraft [28]. More
specifically, recent articles [3, 2] have reported on the successful use of SDRE in the development
of nonlinear feedback control methods for real-time implementation on a chemical vapor deposition
reactor. The problems are optimal tracking problems (for regulation of the growth of thin films in
a high-pressure chemical vapor deposition (HPCVD) reactor) that employ state-dependent Riccati
gains with nonlinear observations and the resulting dual state-dependent Riccati equations for the
compensator gains.

Even though these computational efforts are very promising, the present investigation opens
a host of fundamental mathematical questions that should provide a rich source of theoretical
challenges. In particular, much of the focus thus far has been on the full state feedback theory, the
implementation of the method, and numerical methods for solving the SDRE with a constant control
coefficient matrix. In most cases, the theory developed also involves using nonlinear weighting
coefficients for the state and control in the cost functional to produce near optimal solutions. This
methodology is quite useful and also quite difficult to implement for complex systems. Therefore,
it is of general interest to explore the use of constant weighting matrices to produce a suboptimal
control law that has the advantage of ease of configuration and implementation. In addition, the
development of a comprehensive theory is needed for approximation and convergence of the state-
dependent Riccati equation approach for nonlinear compensation. Finally, a current approach
for solving the SDRE is via symbolic software package such as Macsyma or Mathematica [9].
However, this is only possible for systems having special structures. In [6], an efficient computational
methodology was proposed that requires splitting the state-dependent coefficient matrix A(x) into
a constant matrix part and a state-dependent part as A(x) = A0 + ε∆A(x). This method is
effective locally for systems with constant control coefficients and if the function ∆A(x) is not too
complicated (e.g., when it has the same function of x in all entries) then the SDRE can be solved
through a series of constant-valued matrix Lyapunov equations. The assumption on the form of
∆A(x), however, does limit the problems for which this SDRE approximation method is applicable.
Another method, based on interpolation, is effective for nonconstant control coefficients and it can
be applied throughout the state space. The interpolation approach involves varying the SDRE over
the states and creating a grid of values for the control u(x) or the solution to the SDRE Π(x).

In this paper, we examine the SDRE technique with constant weighting coefficients. In Sec-
tion 2, we review the full state feedback theory and prove local asymptotic stability for the closed
loop system. A simple example with an attainable exact solution is presented to verify the the-
oretical result. This example also exhibits the efficiency of the method outside of the region for
which the condition in the proof predicts asymptotic stability. Section 3 summarizes two of the
numerical methods that are currently available for the approximation of the SDRE solution. Sec-
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tion 4 presents the extension of the SDRE methodology to the nonlinear state estimation problem.
It includes local convergence results of the nonlinear state estimator and a numerical example.
Section 5 addresses the estimator based feedback control synthesis including a local asymptotic
stability result for the closed loop system as well as an illustrative example.

2 Full State Response

In this section we formulate the optimal control problem where it is assumed that all state variables
are available for feedback. In [9], the theory for full state feedback is developed for nonconstant
weighting matrices. Here, we formulate our optimal control problem with constant weighting
matrices. In particular, the cost functional is given by the integral

J(x0, u) =
1

2

∫ ∞

t0

xTQx+ uTRudt, (1)

where x ∈ <n, u ∈ <m, Q ∈ <n×n is symmetric positive semidefinite (SPSD), and R ∈ <m×m is
symmetric positive definite (SPD). Associated with the performance index (1) are the nonlinear
dynamics

ẋ = f(x) +B(x)u, (2)

where f(x) is a nonlinear function in Ck and B(x) ∈ <n×m is a matrix-valued function. Rewriting
the nonlinear dynamics (2) in the state-dependent coefficient (SDC) form f(x) = A(x)x, we have

ẋ = A(x)x+B(x)u, (3)

where, in general, A(x) is unique only if x is scalar [9]. For the multivariable case we consider an
illustrative example, f(x) = [x2, x

3
1]
T . The obvious SDC parameterization is

A1(x) =

[

0 1
x2

1 0

]

.

However, we can find another SDC parameterization

A2(x) =

[

x2/x1 0
x2

1 0

]

by dividing and multiplying each component of f(x) by x1. We find yet another SDC parameteri-
zation

A3(x) =

[

−x2 1 + x1

x2
1 0

]

by adding and subtracting the term x1x2 to f1(x). Since there exists at least two SDC parameter-
izations, there are an infinite number. This is true since for all 0 ≤ α ≤ 1,

αA1(x)x+ (1− α)A2(x)x = αf(x) + (1− α)f(x) = f(x). (4)

Remark 2.1. Choosing the SDRE parameterization

Because of the many available SDC parameterizations, as we design the control law we
must choose the one that is most appropriate for the system and control objectives of
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interest. One factor that is of considerable importance is the state-dependent controlla-
bility matrix (or in estimation theory, the state-dependent observability matrix). As in
the linear theory, the matrix is given by

M(x) =
[

B(x) A(x)B(x) . . . A(n−1)(x)B(x)
]

.

In linear system theory, if M (a constant in this case) has full rank then the system is
controllable. In the nonlinear case we must seek a parameterization that givesM(x) full
rank for the entire domain for which the system is to be controlled. For estimation (to
be considered in Section 4), one must consider the state-dependent observability matrix,

O(x) =











C(x)
C(x)A(x)

...
C(x)An−1(x)











,

when choosing the parameterization.

The Hamiltonian for the optimal control problem (1)-(3) is given by

H(x, u, λ) =
1

2
(xTQx+ uTRu) + λT (A(x)x+B(x)u). (5)

From the Hamiltonian, the necessary conditions for the optimal control are found to be

λ̇ = −Qx−
[

∂ (A(x)x)

∂x

]T

λ−
[

∂ (B(x)u)

∂x

]T

λ, (6)

ẋ = A(x)x+B(x)u, (7)

and

0 = Ru+BT (x)λ. (8)

Let Ai: denote the ith row of A(x) and Bi: denote the ith row of B(x). Then

∂ (A(x)x)

∂x
= A(x) +

∂ (A(x))

∂x
x

= A(x) +







∂A1:

∂x1
x . . . ∂A1:

∂xn
x

...
. . .

...
∂An:

∂x1
x . . . ∂An:

∂xn
x







(9)

and

∂ (B(x)u)

∂x
=







∂B1:

∂x1
u . . . ∂B1:

∂xn
u

...
. . .

...
∂Bn:

∂x1
u . . . ∂Bn:

∂xn
u






. (10)

Mimicking the Sweep Method [19], the co-state is assumed to be of the form λ = Π(x)x (note
the state dependency). Using this form for λ in equation (8) we obtain a feedback control u =
−R−1BT (x)Π(x)x. Substituting this control back into (7), we find ẋ = A(x)x−B(x)R−1BT (x)Π(x)x.
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To find the matrix-valued function Π(x), we differentiate λ = Π(x)x with respect to time along a
trajectory to obtain

λ̇ = Π̇(x)x+Π(x)ẋ

= Π̇(x)x+Π(x)A(x)x−Π(x)B(x)R−1BT (x)Π(x)x,
(11)

where we use the notation

Π̇(x) =
n
∑

i=1

Πxi
(x)ẋi(t).

If we set this equal to λ̇ from (6), we find

Π̇(x)x+Π(x)A(x)x−Π(x)B(x)R−1BT (x)Π(x)x

= −Qx−
[

A(x) +
∂ (A(x))

∂x
x

]T

Π(x)x−
[

∂ (B(x)u)

∂x

]T

Π(x)x.

Rearranging terms we find

[(

Π̇(x) +

[

∂ (A(x))

∂x

]T

Π(x) +

[

∂ (B(x)u)

∂x

]T

Π(x)

)

+
(

Π(x)A(x) +AT (x)Π(x)−Π(x)B(x)R−1BT (x)Π(x) +Q
)

]

x = 0.

If we assume that Π(x) solves the SDRE, which is given by

Π(x)A(x) +AT (x)Π(x)−Π(x)B(x)R−1BT (x)Π(x) +Q = 0, (12)

then the following condition must be satisfied for optimality:

Π̇(x) +

[

∂ (A(x))

∂x

]T

Π(x) +

[

∂ (B(x)u)

∂x

]T

Π(x) = 0. (13)

To be consistent with [9], we will refer to (13) as the Optimality Criterion. The suboptimal control
for (1) and (3) is found by solving (12) for Π(x). Then, the optimal control problem has the
suboptimal solution

u = −K(x)x where K(x) = R−1BT (x)Π(x). (14)

In [9], a methodology is presented for forming a state-dependent weighting matrix Q(x) so as
to find an optimal control solution. This methodology is useful but somewhat difficult for complex
systems. Therefore, we focus on the suboptimal control law that is useful for all systems and has
the benefit of ease of implementation. The focus for the remainder of the section will be the local
asymptotic convergence of the state using the SDRE solution to formulate the suboptimal control.
Some of the nomenclature associated with the SDC parameterization is now given to aid in the
presentation of our theoretical results.

Definition 2.1 (Detectable Parameterization). A(x) is a detectable parameterization of the
nonlinear system in Ω if the pair (Q1/2, A(x)) is detectable for all x ∈ Ω.

Definition 2.2 (Stabilizable Parameterization). A(x) is a stabilizable parameterization of the
nonlinear system in Ω if the pair (A(x), B(x)) is stabilizable for all x ∈ Ω.
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We now present a lemma relating the linearization of the original system about the origin and
the SDC parameterization evaluated at zero. To motivate the lemma, consider the following simple
example:

ẋ = f(x) =

[

x1x2 sin(x2) + x2 cos(x1)
x2

1 + 2x2

]

.

Two obvious choices for SDC parameterizations of this system are

A1(x) =

[

x2 sin(x2) cos(x1)
x1 2

]

and

A2(x) =

[

0 x1 sin(x2) + cos(x1)
x1 2

]

.

The gradient of f(x) is given by

∇f(x) =
[

x2 sin(x2)− x2 sin(x1) x1 sin(x2) + x1x2 cos(x2) + cos(x1)
2x1 2

]

.

Since the linearization of f at the origin is the gradient evaluated at zero, we obtain

A1(0) = A2(0) = ∇f(0) =
[

0 1
0 2

]

.

Generalizing this result, we have that:

Lemma 2.1. For any SDC parameterization A(x)x, A(0) is the linearization of f(x) about the
zero equilibrium.

Proof. Let A1(x) and A2(x) be two distinct parameterizations of f(x) and let Ã(x) = A1(x)−A2(x).
Then Ã(x)x = 0 for all x and

∂Ã(x)x

∂x
= Ã(x) +

∂Ã(x)

∂x
x = 0.

Then, because the second term on the right is zero at x = 0, it follows that Ã(0) = 0 which implies
A1(0) = A2(0). Therefore we have that the parameterization evaluated at zero is unique. Without
loss of generality, consider the parameterization given by A1(x). The linearized system is

ż = ∇f(0)z.

But

∇f(x) = A1(x) +
∂A1(x)

∂x
x

so ∇f(0) = A1(0) which has been shown to be unique for all parameterizations.

Remark 2.2. It is assumed that the solution to the SDRE (12) exists for all x in the neighborhood
of the origin being considered (and, naturally, (A(x), B(x)) is a stabilizable parameterization).
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Thus, it is of logical consequence that the solution exists at x = 0 and that Π0 = Π(0) solves
the linear system algebraic Riccati equation (ARE)

Π0A0 +AT
0 Π0 −Π0B0R

−1BT
0 Π0 +Q = 0, (15)

with A0 = A(0) (here, A0 is uniquely defined rather than in [7], where A0 is not necessarily A(0))
and B0 = B(0). Thus, a natural and useful representation of the matrix Π(x) is the representation

Π(x) = Π0 +∆Π(x), (16)

where ∆Π(x) = Π(x) − Π(0) and ∆Π(0) = 0. Likewise, A(x) and B(x) can be rewritten using
the constant matrices A0 and B0 and nonconstant matrices ∆A(x) and ∆B(x) (defined in a way
similar to ∆Π(x)) as

A(x) = A0 +∆A(x), (17)

and
B(x) = B0 +∆B(x), (18)

with ∆A(0) = 0 and ∆B(0) = 0. This leads to the control u being represented as a the sum of a
constant matrix and an incremental matrix,

u(x) = −(K0 +∆K(x))x, (19)

where
K0 = R−1BT

0 Π0, (20)

and
∆K(x) = R−1(BT (x)∆Π(x) + ∆BT (x)Π0). (21)

By construction ∆Π(x) and ∆B(x) are zero at the origin so that ∆K(0) = 0. Under continuity
assumptions on A(x) and B(x), along with the assumption that the SDC parameterization is a
detectable and stabilizable parameterization, it follows that Π(x) is continuous. This follows from
(see page 315, [24])

Theorem 2.1. The maximal hermitian solution Π of the constant ARE

ΠA+ATΠ−ΠBR−1BTΠ+Q = 0

is a continuous function of w = (BR−1BT , A,Q).

Hence, since we require that A(x) and B(x) are continuous, it can be concluded that the
solution to the SDRE, Π(x), is also continuous. Therefore, the norms the incremental matrices
∆A(x), ∆B(x), and ∆K(x) are small in a neighborhood of zero. For the remainder of this chapter,
we denote the ε-ball around z as

Bε(z) = {x : ‖x− z‖ < ε}.

With the use of the ideas in the above discussions, the following theorem can be proven:

Theorem 2.2. Assume that the system

ẋ = f(x) +B(x)u

is such that f(x) and ∂f(x)
∂xj

(j = 1, . . . , n) are continuous in x for all ‖x‖ ≤ r̂, r̂ > 0, and that

f(x) can be written as f(x) = A(x)x (in SDC form). Assume further that A(x) and B(x) are
continuous and the system defined by (1) and (3) is a detectable and stabilizable parameterization
in some nonempty neighborhood of the origin Ω ⊆ Br̂(0). Then the system with the control given
by (14) is locally asymptotically stable.
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Proof. Let r > 0 be the largest radius such that Br(0) ⊆ Ω. By the assumption that the system
is stabilizable at x = 0 we can use LQR theory to create a matrix K0 such that all eigenvalues of
A0−B0K0 have negative real parts. This implies the existence of β > 0 such that Re(λ) < −β for
all eigenvalues (λ) of A0−B0K0. Using the maps defined by (17), (18), and (19), we have that the
controlled nonlinear dynamics can be rewritten in the form

ẋ = A(x)x−B(x)K(x)x
= (A0 +∆A(x))x− (B0 +∆B(x))(K0 +∆K(x))x
= (A0 −B0K0)x+ (∆A(x)−B(x)∆K(x)−∆B(x)K0)x.

If we let
g(x) = ∆A(x)−B(x)∆K(x)−∆B(x)K0 (22)

and h(x) = g(x)x then the system is given by

ẋ = (A0 −B0K0)x+ h(x). (23)

Examination of h(x) reveals that we are dealing with an almost linear system satisfying the property

lim
‖x‖→0

‖h(x)‖
‖x‖ = 0. (24)

This is easily deduced from the inequality

‖h(x)‖ ≤ ‖g(x)‖‖x‖ ≤ (‖∆A(x)‖+ ‖B(x)‖‖∆K(x)‖+ ‖∆B(x)‖‖K0‖)‖x‖,

where the norms of the incremental matrices are known to be continuous and equal to zero at the
origin. Since B(x) is continuous, the norm of B(x) is bounded for any bounded region. Hence,
‖g(x)‖ → 0 as ‖x‖ → 0 and, hence, h(x) satisfies condition (24). From theoretical results on almost
linear systems [8], we know that if the eigenvalues of A0 − B0K0 have negative real parts, h(x) is
continuous around the origin, and condition (24) holds, then x = 0 is asymptotically stable. We
outline the known proof of this result for our specific system since it will serve as a template for
the subsequent arguments presented below.

Let ζ > 0 be given. Then, there exists a δ̂ ∈ (0, r) such that ‖h(x)‖ ≤ ζ‖x‖ whenever ‖x‖ ≤ δ̂.
Let x(0) = x0 ∈ Bδ̂(0). By the assumptions on f and by continuity, the solution exists and remains
in Bδ̂(0) at least until some time t̂ > 0. For t ∈ [0, t̂) we can then express the solution to (23) using
the variation of constants formula to obtain

x(t) = e(A0−B0K0)tx(0) +
∫ t
0 e

(A0−B0K0)(t−s)h(x(s)) ds.

Taking the norm of both sides we have

‖x(t)‖ ≤ ‖e(A0−B0K0)t‖‖x(0)‖+ ζ
∫ t
0 ‖e(A0−B0K0)(t−s)‖‖x(s)‖ ds

for as long as ‖x(t)‖ < δ̂. There exists a positive constant G such that

‖e(A0−B0K0)t‖ ≤ Ge−βt

so that

‖x(t)‖ ≤ Ge−βt‖x(0)‖+ ζG

∫ t

0
e−β(t−s)‖x(s)‖ ds.
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Multiplying by eβt and invoking the Gronwall inequality, we find

eβt‖x(t)‖ ≤ G‖x(0)‖eζGt

or
‖x(t)‖ ≤ G‖x(0)‖e−(β−ζG)t (25)

for all t > 0 such that ‖x(t)‖ < δ̂. We restrict our initial condition domain further by selecting
ζ ∈ (0, β/G). Then, with δ̂ corresponding to this ζ, given ε ∈ (0, δ̂] we select δ = min{δ̂, ε/G}.
Then, for x0 ∈ Bδ(0), we have that ‖x(t)‖ < ε ≤ δ̂ for all t > 0 and x = 0 is stable. Moreover,
(25) holds for all t > 0 if x0 ∈ Bδ(0). Since β − ζG > 0 we have x = 0 is in fact asymptotically
stable.

2.1 Example 1: Exact Solution

In this section we consider a simple example from [20] that has an exact solution. This example
is of particular interest because the numerical method in [7] failed to produce a stabilizing control
based on the approximate SDRE solution. The cost functional for the example under consideration
is

J(x0, u) =

∫ ∞

0

(

xT
[

1
2 0
0 1

2

]

x+
1

2
u2

)

dt, (26)

with associated nonlinear state dynamics
[

ẋ1

ẋ2

]

=

[

x2

x3
1

]

+

[

0
1

]

u. (27)

An SDC parameterization is given by
[

ẋ1

ẋ2

]

=

[

0 1
x2

1 0

] [

x1

x2

]

+

[

0
1

]

u.

The resulting constant and incremental matrices (17) and (18) have the form

A0 =

[

0 1
0 0

]

, ∆A(x) =

[

0 0
x2

1 0

]

,

B0 = B, and ∆B(x) = 0. This parameterization has state-dependent controllability matrix given
by

M(x) =

[

0 1
1 0

]

which has full rank for all x ∈ <2. Therefore, the SDC parameterization is such that (A(x), B(x)) is
controllable for all x and (Q1/2, A(x)) is observable for all x. Hence, we can assume that the SDRE
solution can be used to construct a locally stabilizing suboptimal control via (14). The SDRE for
this SDC parameterization is given by

Π

[

0 1
x2

1 0

]

+

[

0 x2
1

1 0

]

Π−Π

[

0
1

]

2
[

0 1
]

Π+

[

1
2 0
0 1

2

]

= 0,

where Π(x) is a symmetric matrix. The solution to the SDRE has the form

Π(x) =







√

x4
1 + 1

(√

x2
1+
√
x4
1+1

2 + 1
4

)

x2
1+
√
x4
1+2

2

x2
1+
√
x4
1+2

2

√

x2
1+
√
x4
1+1

2 + 1
4






.
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By setting the state to zero we find that the solution to the SDRE at the origin (15) is

Π0 =

[√
3

2

√
2

2√
2

2

√
3

2

]

and ∆Π(x) = Π(x) − Π0. Since ∆B(x) = 0, ∆K(x) = R−1BT∆Π(x) and we have that g(x) =
‖∆A(x)‖+ ‖B‖‖∆K(x)‖. For this example, we find that the eigenvalues of the closed loop system
are −0.866± 0.5i. In Figure 1(a) we see that if we let G = 4 and β = 0.866 then we have found a
bound of the form ‖e(A0−B0K0)t‖ ≤ Ge−βt. Figure 1(b) is a plot of

y = 4g(x)− |Re(λ)| (28)

vs. x1 (since ∆A(x) and ∆K(x) are both dependent only on x1) where we have used the ‖ · ‖2
norm for g. This gives us an idea of the region from which we can choose initial conditions so
that −(β − ζG) < 0. By approximating the zeros of y we see that |x1| ≤ 0.31 produces negative
values for −(β − ζG). Thus, if the initial condition, x0, is in B0.31(0), we are guaranteed decay to
zero at an exponential rate. However, we shall show through numerical examples that the region
of attraction for x = 0 is much larger.

0 1 2 3 4 5 6
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1.5

Time (sec)

||e(A
0
+B

0
K

0
)t||

3e−β t        

4e−β t        

−0.5 −0.3 −0.1 0.1 0.3 0.5
−1

−0.5

0

0.5

1

1.5

x
1

y

a (b)

Figure 1: (a) Different values for G in Ge−βt and (b) plot of y (28) vs. x1, y being negative (shaded)
indicates region of attraction.

We first consider the system behavior when the initial condition is x0 = (1,−1)T . Figure 2(a)
depicts the state dynamics of the controlled system while Figure 2(b) is the norm of the state
dynamics. Not only do the dynamics exhibit decay to zero, but the graph of the norm exhibits
exponential decay. Figure 2(c) is the control and Figure 2(d) is the value of the cost functional
integrand over time.

The second initial condition that we consider is x0 = (5, 0)T . We find that, despite this initial
condition being farther from the origin, the system also converges to zero asymptotically. Fig-
ures 3(a), 3(b), 3(c), and 3(d) correspond to the state, the norm of the state, the control and the
cost functional integrand for the system with this initial condition. The control effort required to
stabilize the system is large relative to that of the previous initial condition. In fact, the cost for
the entire time interval is J = 4023.3, whereas the cost for the first initial condition is 0.6346.
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Figure 2: Full state feedback with exact SDRE solution, (a) closed loop state dynamics, (b) norm
of the state dynamics, (c) SDRE formulated control u, and (d) cost functional integrand over the
time span 0 ≤ t ≤ 10 with the initial condition x0 = (1,−1)T .



SDRE BASED FEEDBACK CONTROL, ESTIMATION, AND COMPENSATION 12

0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

S
ta

te
s
 x

Time (sec)

x
1

x
2

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

n
o
rm

(x
)

Time (sec)

(a) (b)

0 2 4 6 8 10
−300

−250

−200

−150

−100

−50

0

50

C
o

n
tr

o
l 
u

Time (sec)
0 2 4 6 8 10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

x
T
Q

x
+

u
T
R

u

Time (sec)

(c) (d)

Figure 3: Full state feedback with exact SDRE solution, (a) closed loop state dynamics, (b) norm
of the state dynamics, (c) SDRE formulated control u, and (d) cost functional integrand over the
time span 0 ≤ t ≤ 10 with the initial condition x0 = (5, 0)T .
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3 Numerical Methods for Solving SDRE

In Section 2.1, we presented an example for which the solution of the SDRE could be found
analytically. In general one cannot find an exact solution analytically. Currently, one approach for
solving the SDRE is via symbolic software packages such as Macsyma or Mathematica. However,
once the dynamics of the system become complicated it is difficult to obtain a solution in this manner
and it becomes necessary to approximate the solution. The method we describe in Section 3.1,
referred to as the Taylor series method [7], works for systems with constant control coefficients (B
is not dependent on x). This uses the methodology of Taylor series approximations and is only
effective locally. The interpolation method, presented in Section 3.2, can be used for more complex
systems. This method involves varying the state over the domain of interest, solving for and storing
the control u(x), the SDRE solution Π(x), or the SDRE gain K(x) in a grid and interpolating over
the stored solutions to approximate the control.

3.1 Taylor Series Method

The Taylor series method is used to synthesize controls for systems of the form

ẋ = A(x)x+Bu,

where the system has the same characteristics as (2) except that B is constant. Since the control
coefficients are constant, the SDRE has the form

Π(x)A(x) +AT (x)Π(x)−Π(x)BR−1BTΠ(x) +Q = 0, (29)

where Q and R are the matrices from the cost functional (1).
We rewrite the matrix A(x) as a sum of a constant matrix Â and a state-dependent incremental

matrix ∆A(x), where we choose Â so that (Â, B) is stabilizable. In order to form a series repre-
sentation, the temporary variable ε (to be set to one upon completion of the series derivation) is
introduced so that

A(x) = Â+ ε∆A(x).

We also represent the solution of the SDRE as the Taylor series

Π(x, ε) = Π(x)|ε=0 +
∂Π(x)

∂ε

∣

∣

∣

∣

ε=0

ε+
∂2Π(x)

∂ε2

∣

∣

∣

∣

ε=0

ε2

2
+ . . .

=
∞
∑

n=0

εnLn(x),

where each Ln matrix is symmetric as a result of the symmetry of Π(x).
Substitution of these representations for A(x) and Π(x) into (29) yields

( ∞
∑

n=0

εnLn(x)

)

(Â+ ε∆A(x)) + (Â+ ε∆A(x))T

( ∞
∑

n=0

εnLn(x)

)

−
( ∞
∑

n=0

εnLn(x)

)

BR−1BT

( ∞
∑

n=0

εnLn(x)

)

+Q = 0.
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Grouping like powers of ε and setting the coefficients to zero, we obtain an iterative method for
finding the Ln matrices. This iteration scheme is

L0Â+ ÂT L0 − L0BR−1BT L0 +Q = 0, (30)

L1(Â−BR−1BT L0) + (Â
T −BR−1BT L0)L1 + L0∆A+∆AL0 = 0, (31)

Ln(Â−BR−1BT L0) + (Â
T −BT R−1BL0)Ln + Ln−1∆A

+∆AT Ln−1 −
∑n−1

k=1
LkBR−1BT Ln−k

= 0. (32)

We note that equation (30) is the ARE corresponding to (Â, B) while equations (31) and (32)
are state-dependent Lyapunov equations. This algorithm converges locally to the solution of the
SDRE under the assumptions that A(x) and B(x) are continuous [32]. This system of equations
simplifies even further if ∆A(x) = g(x)∆AC , where ∆Ac is a constant matrix. By defining

Ln(x) = (g(x))n(Ln)C ,

with (Ln)C a constant matrix, we obtain the simplified iterative scheme

L0Â+ ÂTL0 − L0BR
−1BTL0 +Q = 0,

(L1)C(Â−BR−1BTL0) + (ÂT −BR−1BTL0)(L1)C + L0∆AC +∆ACL0 = 0,

(Ln)C(Â−BR−1BTL0) + (ÂT −BTR−1BL0)(Ln)C + (Ln−1)C∆AC

+∆AT
C(Ln−1)C −

∑n−1
k=1(Lk)CBR

−1BT (Ln−k)C
= 0.

Therefore, when A(x) is of this type, we can approximate Π(x) using constant matrices calculated
offline by solving one constant ARE and a series of constant Lyapunov equations. The subsequent
control (an approximation of (14)) is given by

uN (x) = −R−1BT

(

N
∑

n=0

((g(x))n(Ln)C)

)

x,

where N is the number of members of the series computed offline.
If solving the Lyapunov equations in real-time is not feasible and ∆A(x) does not take on the

form described above, only L0 and L1 can be computed numerically offline (without the use of
symbolic solutions to the state-dependent Lyapunov equations). To achieve this, we rewrite

A(x) = Â+
m
∑

j=1

fj(x)(∆Aj)C ,

where fj(x) are the distinct nonlinear terms of A(x) and (∆Aj)C are the corresponding constant
matrix coefficients. If we assume L1 can be written as

L1 =
m
∑

j=1

fj(x)(L
j
1)C ,

group the fj(x) terms together for each j, and set the coefficients to zero, we can approximate the
solution to the SDRE by solving

L0Â+ ÂTL0 − L0BR
−1BTL0 +Q = 0,

(Lj1)C(Â−BR−1BTL0) + (ÂT −BR−1BTL0)(L
j
1)C

+L0(∆A
j
C) + (∆Aj

C)L0 = 0, j = 1, . . . ,m.
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The corresponding approximate control (u1 denoting that we use one term, in addition to L0, of
the Taylor series) is given by

u1(x) = −R−1BT



L0 +
m
∑

j=1

Lj1fj(x)



x.

3.2 Interpolation Method

The interpolation method, alluded to in [21], involves formulating the SDRE control (u(x)), SDRE
solution (Π(x)), or even the SDRE gain matrix (K(x)) at a number of states in the domain of
consideration and creating a grid to interpolate over as the states vary. We are able to construct
an interpolation grid because the solutions to the SDRE continuously depend on the state. This
technique is similar in spirit to gain scheduling and an optimal control two point boundary value
problem described in [16]. We now proceed to develop the method mathematically.

3.2.1 Interpolate the Control

Let Ω0 denote the set from which the initial conditions are chosen. We assume that the state space,
Ω, is such that the state trajectory for any initial condition, x0 ∈ Ω0, is contained entirely in Ω. If
n is the dimension of the state, we create a finite mesh, D, that varies each xi, i = 1, . . . , n over
Ω. At each x̂ ∈ D, solve and store the resulting control, ux̂. Thus, we have effectively created an
interpolation grid that can be used to estimate the control for any point in Ω. In other words, the
control can be approximated by

u(x) = interp{ux̂}
where interp{*} represents any type of interpolation (1-d, 2-d, cubic, linear, etc.).

3.2.2 Interpolate over Π(x)

In SDC form, we find that the number of state variables on which A(x) and B(x) depend is often
less than the dimension of the system. Let Ω0 and Ω be defined as above. If n is the dimension of
the state, we denote the r ≤ n states present in A(x) and B(x) as Ξ = {xi1 , ..., xir}. If we create a
mesh, D, that varies over each xij ∈ Ξ over the bounds imposed by Ω, solve and store the resulting
constant SDRE for each x ∈ D, we have effectively created an interpolation grid for each element
of Π(x). Thus, to estimate the solution to the SDRE for any point in Ω, we can interpolate over
the elements of the grid. Thus, we can approximate the control with

u(x) = −R−1BT (x)







interp{π11(x)} . . . interp{π1n(x)}
...

. . .
...

interp{πn1(x)} . . . interp{πnn(x)}






x,

where interp{*} is defined as above. Since Π(x) is symmetric, we have interp{πij} = interp{πji}
and the number of r-degree interpolations is then n(n+ 1)/2.

Remark 3.1. We make the following comments regarding the interpolation method:

(i) The number of points (M) used for the mesh should be sufficiently large so that
the closed loop system is approximated accurately (otherwise, there might be in-
stability).
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(ii) Interpolation over Π(x) is advantageous when the number of states, r, in Ξ is less
than n. The degree of the interpolation is less for each element of Π(x) and the
elements not present in Ξ do not have bounds invoked by the mesh.

(iii) Interpolation over u(x) is advantageous when the number of states, r, in Ξ is equal
to n since both meshes will impose bounds on all states and the interpolation is of
the same complexity.

(iv) If nm ≤ n(n + 1)/2, where m is the dimension of the control, then the interpo-
lation method can be used with the gain matrix, K(x) to decrease the number of
interpolations needed.

(iv) Not only can the interpolation method be used for nonconstant B(x), but it can
also be used in more complex SDRE formulations that have nonconstant weighting
matrices, Q(x) and R(x), in the cost functional.

3.3 Example 1 Revisited: Numerical Approximations

In Section 2.1 the exact solution to (26), (27) was used for the control of the system. We now use
the numerical methods introduced in the previous section to approximate the solution to the SDRE,
synthesize controls based on the approximations, and compare the results to the exact solution.
To generate the Taylor series, we use the same representations as in Section 2 to split A(x) into a
constant and state-dependent part. Therefore, we have

Â =

[

0 1
0 0

]

, ∆A(x) =

[

0 0
1 0

]

x2
1.

Since ∆A(x) = ACg(x), we can generate as many terms of the Taylor series offline as desired. For
the interpolation methods (both u(x) and Π(x)), we create four grids INTu1, INTu2, INTPI1, and
INTPI2 generated by two different meshes; one that uses a constant increment and another that
focuses more attention (a finer mesh) closer to zero. Specifically, the first meshD1 (corresponding to
INTu1 and INTPI1), is varied from [-5,5] in steps of 0.5 whereas the second mesh, D2 (corresponding
to INTu2 and INTPI2), takes the values x ∈ {−5,−3.5,−2.5, 2.5, 3.5, 5} ∪ {−1 : 0.25 : 1}, where
{a : b : c} indicates incrementing from a to c in steps of b. For interpolating the control, u(x), we
vary both x1 and x2 over the values in each mesh and for Π(x) we only vary x1 since x2 does not
appear in A(x).

As mentioned in Section 3.1, there are limitations when using the Taylor series method for
approximating the SDRE outside of a small interval about the origin. For instance, in [7], the
approximate SDRE control fails for the system (26), (27) with initial conditions x0 = (2, 0)T and
x0 = (4, 0)T . This occurs when five terms of the Taylor series method are used to approximate
Π(x). The instability can be examined more completely if we consider the maximum real part of
the eigenvalues of the closed loop matrix A(x) − BK(x) over an interval of x1. If the maximum
real part of these eigenvalues crosses the y-axis, the estimation for Π(x) is not only inaccurate
but also causes the system to become unstable. Figure 4(a) depicts the maximum real part of
the eigenvalues of A(x) − BK(x) over x1 ∈ {−5 : 0.2 : 5} when Taylor series of different lengths
were used to synthesize the control. It can be seen that the real part of the eigenvalue for the
Taylor series approximations are close to the exact solution locally. We see that if the 2-term and
8-term expansions are used for the approximations to Π(x), then the closed loop system will have
eigenvalues with negative real parts. The other expansions displayed in the plot produce unstable
behavior outside a small neighborhood of the origin. In fact, the expansion with five terms has
eigenvalues with negative real parts in the smallest interval of the six presented. Therefore, it is
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Figure 4: Maximum real part of the eigenvalues of the closed loop control matrix for (a) Taylor
series method and (b) Π(x) interpolation grids INTPI1 and INTPI2.

not a surprise that there were difficulties using the control for the system with the initial condition
(2, 0)T and (4, 0)T . We see from this example that using more terms in the Taylor series will not
necessarily result in more accuracy. For instance, we observe that the use of the 8-term expansion
in control formulation results in a closed loop system that remains stable for the entire interval
whereas the 10-term series results in an unstable closed loop system outside of a small region
of the origin. For the sake of comparison, we provide the plot for the maximum real part of the
eigenvalues of the closed loop control for the interpolation method (over Π(x)) in Figure 4(b). Here,
the maximum real part of the eigenvalues is close to exact for both cubic and linear interpolation
for the entire interval.

Next, to study the accuracy of all of the numerical approaches, we use the approximate feedback
controls to stabilize the system from a number of initial conditions. Since the 2-term and 8-term
Taylor series produce the only stable closed loop systems, we present the results for the controls
generated with these two series. We use initial conditions close to the origin and relatively far
from the origin, so as to compare the Taylor series method to the interpolation method in both
situations. These initial conditions are (1, 0)T and (3, 3)T , respectively.

Table 3.3 lists the floating point operation count (FLOPS) needed at each time step to compute
the control, the 2-norm of the difference between the numerical method and the exact solution, and
the value of (26) for both initial conditions. Since INTu2 does not have a uniform mesh, it requires
more FLOPS to use interpolation. As can be seen in the table, one 2-d cubic interpolation for u(x)
is more costly than the three 1-d cubic interpolations for the Π(x) grid and the control formulated
using the Π(x) grid is also the most accurate for both types of interpolation. Figures 5(a), 5(b),
5(c), and 5(d) represent the states x1 and x2, the control, and the cost functional integrand for
this example with the initial condition x0 = (1, 0)T . The solutions presented graphically are the
2-term Taylor series and control interpolation over INTu1 and INTu2 using linear interpolation.
The 2-term Taylor series is presented because it has lower cost and is the more accurate of the
two stable Taylor series representations. The specific interpolation methods are displayed because
they are the worst performing of the interpolation method and still relatively accurate and low cost
compared to the Taylor series approximation. The second interpolation grid (INTu2), as mentioned,
was created for better performance near the origin. This is reflected in the figures since the control
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Method FLOPS D1 C1 D2 C2

Exact 22 0.000 1.967 0.000 7.677× 102

2-term TS 34 2.933× 10−1 1.833 9.872 1.231× 103

8-term TS 100 1.105× 10−1 2.246 4.722 7.717× 1014

INTu1: Linear 39 2.466× 10−1 2.009 3.637× 10−1 7.688× 102

INTu1: Cubic 475 3.623× 10−2 1.964 2.492× 10−2 7.676× 102

INTPI1: Linear 69 9.062× 10−2 1.980 1.047× 10−1 7.682× 102

INTPI1: Cubic 162 5.334× 10−3 1.967 5.909× 10−3 7.677× 102

INTu2: Linear 121 6.564× 10−2 1.976 2.112 8.401× 102

INTu2: Cubic 6935 1.556× 10−3 1.966 3.541× 10−2 7.681× 102

INTPI2: Linear 138 2.420× 10−2 1.970 7.587× 10−1 7.914× 102

INTPI2: Cubic 2280 1.011× 10−4 1.967 1.628× 10−2 7.683× 102

Table 1: Comparison of Numerical Methods, FLOPS - the floating point operations needed to
compute the control for one time step, the 2-norm of the difference of the approximate state
trajectory and the exact trajectory for (D1) x0 = (1, 0)T and (D2) x0 = (3, 3)T , and the value of
the cost functional integrand for (C1) x0 = (1, 0)T and (C2) x0 = (3, 3)T .

and subsequent dynamics are closer to those generated by the exact solution than those generated
by the uniform grid (INTu1). The Taylor series approach also produces a control that is similar to
the exact for this relatively local initial condition.

The second initial condition, (3, 3)T is further from the origin. However, all of the methods
produce stabilizing controls. Figures 6(a), 6(b), 6(c), and 6(d) represent the states x1 and x2, the
control, and the cost integrand for this initial condition. The Taylor series method depicted (as well
as the 8-term, not depicted) produces an approximate feedback control that is far from accurate.
The interpolation method produces relatively accurate controls without much computational effort.

3.4 5D Example

To illustrate a case when interpolating over Π(x) or K(x) is more beneficial, we consider the
following example from [31]. The system is

ẋ =













x2

x3

x3
4

x5 + x3
4 − x2

1

0













+













0 0
0 0
1 0
0 0
0 1













u. (33)

Associated with these dynamics, we choose the quadratic cost functional weighting matrices in (1)
to be Q = 10I5×5 and R = 0.1I2×2.

Here, we use an obvious SDC parameterization

A(x) =













0 1 0 0 0
0 0 1 0 0
0 0 0 x2

4 0
−x1 0 0 x2

4 1
0 0 0 0 0












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Figure 5: Comparison of Taylor series and interpolation methods for 2D example, closed loop state
dynamics for (a) x1 and (b) x2, (c) control u, and (d) cost functional integrand over the time span
0 ≤ t ≤ 10 with x0 = (1, 0)T .
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Figure 6: Comparison of Taylor series and interpolation methods for 2D example, closed loop state
dynamics for (a) x1 and (b) x2, (c) control u, and (d) cost functional integrand from 0 ≤ t ≤ 10
with x0 = (3, 3)T .
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Method FLOPS

INTPI: Linear 2028

INTK: Linear 1292

INTu: Linear 2202

Table 2: Comparison of interpolation methods for 5D example.

The first n = 5 columns of the state-dependent controllability matrix are

M(x) =













0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0













which has rank n. There are only two states present in the A(x) matrix so that Ξ = {x1, x4}.
Hence, when creating the Π(x) and K(x) grids (INTPI and INTK, respectively), we need only vary
over those two particular states. Both of the grids use the mesh

D14 = {x1 = −2 : 0.5 : 2} × {x4 = −2 : 0.2 : 2}.
When creating the grid for interpolation over u, we must create a grid in five dimensions. This
task is accomplished by crossing the D14 mesh with Dj = {xj = −2 : 1 : 2}, j = 2, 3, 5. There-
fore, the offline calculations take more time and computational effort to produce the grid. The
control is formulated at each time step by either two 5D linear interpolations for u, ten 2D linear
interpolations for K(x) or fifteen 2D linear interpolations for Π(x). Because of the complexity of
5D interpolations, interpolation over the u grid is not only less accurate but more computationally
taxing. Figures 7(a)–(d) represent states x2, x4, x5, and control u2 respectively. The number of
FLOPS that it took to formulate the control at each time step for the different methods is given
in Table 2. Here, interpolation over the gain matrix K(x) is clearly the most accurate and least
computationally taxing. Note that in each of the following two examples the “exact” solution is
obtained by solving the SDRE evaluated at the state (so that it is an ARE) at each time increment
of the integration.

3.5 3D Example

The last example we present is referred to as the toy example [13]. We present this example because
it exhibits complexities not yet encountered in the previous examples. First, it has nonconstant
weighting matrices for the state. Specifically, we seek to minimize the cost functional

J(x0, u) =

∫ ∞

0
xTQ(x)x+ uTRudt

where

Q(x) = 0.01





0 0 0
0 ex1 1
0 1 e−x1



 ,

with respect to the state dynamics

ẋ1 = f1(x)

ẋ2 = e−x1x3 + e−x1/2u

ẋ3 = −ex1x2 + ex1/2u

,
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Figure 7: Comparison of interpolation methods for 5D example, closed loop state dynamics
for (a) x2, (b) x4, and (c) x5, and (d) control u2 over the time span 0 ≤ t ≤ 10 with
x0=(0.4,−0.2, 0.1,−0.1, 0.5)T .
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Figure 8: c1 with fc step size (a) 0.0001 and (b) 0.01.

where
f1(x) = χ[−3,3](x1)sgn(e

x1x2
2 − e−x1x2

3).

Second, since the dynamics are not continuous we must use an approximate continuous parameter-
ization to formulate the SDRE control. As detailed in [13], the x1 dynamics used to formulate the
control are approximated and stabilized using

ẋ1 ≈ satsin(fc)− x1,

where

satsin(θ) =







sin
(

πθ
2δ

)

if |θ| < δ
1 if θ ≥ δ
−1 if θ ≤ −δ

,

fc = ex1x2
2 − e−x1x2

3,

and δ = 0.001. Then, defining

c1 = satsin(fc)
fc

, c2 = ex1−1
x1

, and c3 = e−x1−1
x1

,

we can rewrite the dynamics used to formulate the control as

ẋ1 ≈ c1(c2x1 + 1)x2
2 − c1(c3x1 + 1)x2

3 − x1

ẋ2 = (c3x1 + 1)x3 + e−x1/2u

ẋ3 = −(c2x1 + 1)x2 + ex1/2

This introduces the last complexity that is of importance. The limits of c1, c2, and c3 as fc and
x1 go to zero exist (and are 2/(δπ), 1, and −1 respectively) and, hence, each are well behaved.
However, as we increase the increment of fc from 0.0001 to 0.01, it decreases the appearance of
continuity in c1 (see Figure 8). Therefore, the grid step size must be kept reasonably small to keep
the closed loop system stable. This is also problematic for time integration, even using the exact
solution. As can be seen in [13], there is some discontinuous behavior depicted in the plots of the
control. In fact, we found that we had to increase the tolerance (of the Matlab routine ode15s) in
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Method FLOPS

INTPI: Linear 1413

INTK: Linear 696

INTu: Linear 246

Table 3: Comparison of interpolation methods for 3D example.

order to integrate the system with the exact solution (the SDRE being solved at each time step)
for some initial conditions.

By (4), we can parameterize these dynamics in many ways. In [13] (here we correct a mistake
made therein), the terms with more than one multiple of the state are represented as

c1c2x1x
2
2 = α1(c1c2x

2
2)x1 + (1− α1)(c1c2x1x2)x2,

c1c3x1x
2
3 = α2(c1c3x

2
3)x1 + (1− α2)(c1c3x1x3)x3,

c3x1x3 = α3(c3x1)x3 + (1− α3)(c3x3)x1,
c2x1x2 = α4(c2x2)x1 + (1− α4)(c2x1)x2.

(34)

We choose α1 = α2 = 0 and α3 = α4 = 1 resulting in the parameterization

A(x) =





−1 c1c2x1x2 + c1x2 −c1c3x1x3 − c1x3

c3x3 0 1
−c2x2 −1 0





and

B(x) =





0

e−x1/2

ex1/2



 .

The grids that we use result from varying x1, x2 and x3 over the mesh D = {−3.5 : 0.2 : 3.5}. As
depicted in Figure 9, interpolation over Π(x), K(x), and u(x) all stabilize the system. The FLOPS
needed to compute the solution for each method are given in Table 3. Since u(x) only requires
one interpolation, it is evident that interpolation over this grid is the most efficient method to
approximate the control.

4 Nonlinear Estimation

We now extend the SDRE theory for state feedback to state estimation. This is of particular
interest for nonlinear systems with state-dependent output coefficients. Specifically, for systems
that can be put in the form

ẋ = f(x) = A(x)x, (35)

where x ∈ <n and f(x) is nonlinear with output given by

y = C(x)x, (36)

where C(x) is a continuous m× n matrix-valued function. From [14], we see that a system of the
form

ẋe = A(xe)xe +Ψ(xe, (C(x)x− C(xe)xe)) (37)

is a state estimator for this system if the error is asymptotically stable at the zero equilibrium.
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Figure 9: Comparison of interpolation methods for 3D example, closed loop state dynamics for (a)
x1, (b) x2, and (c) x3, and (d) control u over the time span 0 ≤ t ≤ 20 with x0=(0, 2, 3)T .
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We can now formulate the proposed nonlinear estimator by mimicking the theory of estimators
for linear systems. If the system were linear, it is well known that the optimal observer is given by

Ψ(z, (Cx− Cz)) = L(Cx− Cz),

where L = ΓCTV −1 and Γ solves the ARE for the dual system. Likewise, under certain assumptions,
we obtain a suboptimal observer for the nonlinear system by exploiting the dual system. Hence, to
find the suboptimal observer, we consider the cost functional

J(x̂, û) =
1

2

∫ ∞

0
x̂TUx̂+ ûTV û dt, (38)

with associated state dynamics given by

˙̂x = AT (x̂)x̂+ CT (x̂)û,

where U ∈ <n×n is SPSD and V ∈ <m×m is SPD. Similar to the linear theory, we choose

Ψ(xe, (C(x)x− C(xe)xe)) = L(xe)(C(x)x− C(xe)xe),

where
L(xe) = Γ(xe)C

T (xe)V
−1 (39)

and Γ(xe) solves the dual SDRE,

Γ(xe)A
T (xe) +A(xe)Γ(xe)− Γ(xe)C

T (xe)V
−1C(xe)Γ(xe) + U = 0. (40)

The system with the proposed observer is given by

ẋ = A(x)x, (41)

ẋe = A(xe)xe + L(xe)(y − C(xe)xe), (42)

y = C(x)x. (43)

(44)

It remains to be shown that the error for the system is asymptotically stable to zero. To develop
the theory, we require the following remarks and observations:

Remark 4.1. The observer based SDRE has a solution at each x in the state domain, including
x = 0.

Define A0 = A(0) and C0 = C(0). Then, the solution at x = 0, Γ0, is the solution to the ARE

Γ0A
T
0 +A0Γ0 − Γ0C

T
0 V

−1C0Γ0 + U = 0. (45)

Therefore, each of the state-dependent matrices can be represented by the maps

A(x) = A0 +∆A(x),

C(x) = C0 +∆C(x),

and

Γ(x) = Γ0 +∆Γ(x).
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It follows directly that
L(x) = L0 +∆L(x),

where
L0 = Γ0C

T
0 V

−1 (46)

and
∆L(x) = (∆Γ(x)CT (x) + Γ0∆C

T (x))V −1.

Here, L0 is the gain matrix that stabilizes (AT
0 , C

T
0 ). Consequently, A0 − L0C0 has all eigenvalues

with negative real parts. Also, since ∆A(x), ∆C(x), and ∆Γ(x) are zero at x = 0 and continuous,
they are small and bounded in a neighborhood of the origin. As a result, ∆L(0) = 0 and ∆L(x) is
small in a neighborhood of the origin.

We are now able to prove the following theorem:

Theorem 4.1. Assume that f(x) and ∂f(x)
∂xj

(j = 1, . . . , n) are continuous in x for all ‖x‖ ≤ r̂,

r̂ > 0 and that x = 0 is a stable equilibrium point of (41). Additionally assume that f(x) and
y(x) can be put into SDC form such that f(x) = A(x)x and y(x) = C(x)x where (A(x), C(x)) is a
detectable parameterization and A(x) and C(x) are locally Lipschitz for all x ∈ Ω ⊆ Br(0), where
Ω is a nonempty neighborhood of the origin. Then the estimated state given by

ẋe = A(xe)xe + L(xe)(C(x)x− C(xe)xe), (47)

(where L(x) is given by (39)) will converge locally asymptotically to the state.

Proof. Let r > 0 be the largest radius such that Br(0) ⊆ Ω. As in the linear case, we consider the
error between the actual state and the estimated state given by

e(t) = x(t)− xe(t).

The error must satisfy the differential equation

ė(t) = ẋ(t)− ẋe(t),

with the initial condition e0 = e(0) = x0 − xe0 , where x0 = x(0) and xe0 = xe(0). Substituting the
state (35) and state estimator dynamics (47) into the error dynamics yields,

ė = A(x)x−A(xe)xe − L(xe)(C(x)x− C(xe)xe)
= (A0 − L0C0)e+∆A(x)x−∆A(xe)xe

−L(xe)(∆C(x)x−∆C(xe)xe)−∆L(xe)C0e.

We set

g(x, xe, e) = ∆A(x)x−∆A(xe)xe

− L(xe)(∆C(x)x−∆C(xe)xe)

−∆L(xe)C0e.

(48)

By the hypotheses that A(x) is locally Lipschitz on Ω, there exists a κA > 0 such that

‖A(x)−A(xe)‖ ≤ κA‖e‖.

This Lipschitz condition extends to ∆A(x) = A(x)−A0 so that

‖∆A(x)−∆A(xe)‖ ≤ κA‖e‖.
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This, in turn, implies that

‖∆A(x)x−∆A(xe)xe‖ = ‖∆A(x)x−∆A(xe)x

+∆A(xe)x−∆A(xe)xe‖
≤ (κA‖x‖+ ‖∆A(xe)‖) ‖e‖.

By the conditions placed on C(x) there exists a Lipschitz constant, κC , such that (upon the same
manipulation as above)

‖∆C(x)x−∆C(xe)xe‖ ≤ (κC‖x‖+ ‖∆C(xe)‖) ‖e‖.

For notational brevity, we set

h(x, xe) = (κA‖x‖ + ‖∆A(xe)‖+ κC‖x‖‖L(xe)‖
+ ‖∆C(xe)‖‖L(xe)‖ +‖∆L(xe)‖‖C0‖)

and conclude that

‖g(x, xe, e)‖ ≤ h(x, xe)‖e‖. (49)

By construction of the incremental matrices,

lim
x,xe→0

h(x, xe) = 0.

Due to the detectability condition at the origin and the use of SDRE (and due to construction,
LQR) techniques to find the gain, L0, there exists β > 0 and G > 0 such that

‖ exp(A0 − L0C0)‖ ≤ G exp(−βt).

Then, given η ∈ (0, β/G) let ε ∈ (0, r) be such that h(z, ẑ) ≤ η for all z, ẑ ∈ Bε(0) ⊆ Ω. The
equilibrium x = 0 is stable implying that there exists a δ ∈ (0, ε/2] such that ‖x(t)‖ < ε/2 for all
time so long as ‖x0‖ < δ. Let x0 and e0 be such x0 ∈ Bδ(0) ⊆ Ω and e0 ∈ Bε̂(0), where ε̂ = ε/(2Ĝ)
and Ĝ = max{G, 1}. Then the error dynamics have a local solution and are still contained in Br(0),
possibly on only a small interval [0, t̃), and so long as the solution exists it can be expressed by the
variations of constants formula

e(t) = exp((A0−L0C0)t)e(0)

+

∫ t

0
exp((A0 − L0C0)(t− s))g(x(s), xe(s), e(s)) ds.

(50)

By continuity there exists some finite time t̂ ∈
(

0, t̃
]

such that e(t) is in the ball Bε/2(0). Then,

upon taking the norm of both sides of (50), we find that for all t ∈ [0, t̂)

‖e(t)‖ ≤ G exp(−βt)‖e(0)‖+Gη

∫ t

0
exp(−β(t− s))‖e(s)‖ ds. (51)

We now multiply by exp(βt) and apply the Gronwall inequality so that, for t ∈ [0, t̂),

exp(βt)‖e(t)‖ ≤ G‖e0‖ exp(Gηt) (52)
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and it follows that
‖e(t)‖ ≤ G‖e0‖ exp((Gη − β)t). (53)

By the choice we have made for e0 then

‖e(t)‖ ≤ ε

2
exp((Gη − β)t). (54)

But the bound η holds only as long as xe(t) remains in Bε(0). However, because ‖xe(t)‖−‖x(t)‖ ≤
‖e(t)‖,

‖xe(t)‖ ≤
ε

2
+
ε

2
exp((Gη − β)t). (55)

Hence, by η < β/G, xe stays in Bε(0) for all time and the state estimator converges exponentially
to the state.

4.1 State Estimator Example One

This example is a simple demonstration of the SDRE technique for state estimation. The system
that we wish to observe (from [29]) is given by

ẋ1 = x2x
2
1 + x2,

ẋ2 = −x3
1 − x1,

y = x1.

In SDC form, the above system can be rewritten as

ẋ =

[

0 1 + x2
1

−(1 + x2
1) 0

]

x

y =
[

1 0
]

x.

The state-dependent observability matrix is

O(x) =

[

1 0
0 1 + x2

1

]

.

Since O(x) has full rank throughout <2, the system is observable.
We set the weighting matrices in (38) to U = 10I and V = 0.01. We use the interpolation

method to approximate Γ(x) where the estimator mesh is Mx = {−2 : 0.1 : 2}. We use an
initial condition of x0 = (1, 1)T for the state and xe0 = (0.5, 0.5)T for the estimated state. As a
comparison, we also display the state estimator found in [29] given by

ż1 = −5z1 + z2 + 5y + z1z
2
2

ż2 = −11z1 − z3
1 + 10y

which we refer to as the Thau estimate (for this system). Figures 10(a) and (b) exhibit the fast
convergence of each state estimate to x1 and x2. Figure 10(c) is a state-space representation of the
state estimator over time, included as comparison for the plot given in [29]. Figure 10(d) represents
the norm of the difference between the actual state and estimated state. We see that the error
decreases gradually for the SDRE technique while the error for the Thau state estimator is erratic.
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Figure 10: Plots for Example 4.1, (a) state x1 with the Thau and SDRE estimates of x1, (b) state
x2 with the Thau and SDRE estimates of x2, (c) state-space representations x2 vs. x1 for actual
state and state estimators, and (d) error of the Thau and SDRE state estimators over the time
span 0 ≤ t ≤ 10 with state initial condition x0 = (1, 1)T and state estimator initial condition
xe0 = (0.5, 0.5)T .
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4.2 State Estimator Example Two: Unstable Zero Equilibrium

We now present an example that shows the effectiveness of the estimator synthesized through the
use of SDRE techniques even when the hypotheses of the theorem are not satisfied. Consider the
system

ẋ1 = x2,
ẋ2 = −x2|x2|,

(56)

with measurement
y = x1.

Lyapunov stability theory states that if there exists a Lyapunov function, V , such that in every
neighborhood of the origin V and V̇ have the same sign, then the origin is unstable. Using the
Lyapunov function V (x) = ‖x‖22 we see that

V̇ (x) = x1ẋ1 + x2ẋ2

= x1x2 − x2
2|x2|.

If we let ε ∈ (0, 1) and consider the vector x̂ = (ε/2, ε/2)T ∈ Bε(0). Then, V (x̂) > 0 and since
ε2 ≤ ε,

V̇ (x̂) =
ε

2

(

ε

2
− ε2

4

)

> 0.

Therefore, zero is unstable for the given system and this violates the hypotheses of the theorem.
However, numerically we shall show that the state estimator constructed with SDRE techniques

works very well. As a comparison, we consider the following second order estimator from [29] (we
will again refer to this as the Thau state estimator):

ż1 = −20z1 + z2 + 10y,
ż2 = −100z1 − z2|z2|+ 100y.

We can rewrite (56) in the SDC form f(x) = A(x)x where

A(x) =

[

0 1
0 −|x2|

]

.

Since
C =

[

1 0
]

,

the state-dependent observability matrix is O(x) = I, so we have that this system is observable for
all x. For the weighting matrices in (38), we use U = 50I and V = 0.1. To approximate the solution
to the SDRE, we use the interpolation method for Π(x) and the mesh used is Mx = {−5 : 0.2 : 5}.
We set the initial condition of the state to x0 = (1, 1)T and the initial condition of each state
estimator to xe0 = (0, 0)T . Figure 11 depicts the behavior of the Thau and SDRE state estimators
over a five second time span. Figure 11(a) exhibits the fast convergence of each state estimator to
x1, where Figure 11(b) conveys that each state estimator takes more time to converge to x2. The
Thau state estimator is erratic at first and becomes closer to the actual state quicker, whereas the
SDRE estimator converges slower but does not stray as far initially. Figure 11(c) is a state-space
representation of the state estimator over time, included as comparison for the plot given in [29].
Figure 11(d) represents the norm of the difference of the actual state and estimated state. We
see that the error decreases gradually for the SDRE technique while the error for the Thau state
estimator increases initially and then decreases abruptly.
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Figure 11: Plots for Example 4.2, (a) state x1 with the Thau and SDRE estimates of x1, (b) state x2

with the Thau and SDRE estimates of x2, (c) state-space representations x2 vs. x1 for actual state
and state estimators, and (d) norm of the error, ‖e(t)‖2, for the Thau and SDRE state estimators
over the time span 0 ≤ t ≤ 5 with state initial condition x0 = (1, 1)T and state estimator initial
condition xe0 = (0, 0)T .
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5 Compensation Using the SDRE State Estimator

In this section, we investigate the use of the SDRE state estimator in state feedback control laws
to compensate given nonlinear systems. We consider systems that can be put in the SDC form

ẋ = A(x)x+B(x)u,
y = C(x)x,

where A(x) is a continuous n × n matrix-valued function, B(x) is a continuous n × m matrix-
valued function and C(x) is a continuous p × n matrix-valued function. We denote Π(x) as the
solution to (12), where Q and R are the matrices from the cost functional (1) and Γ(x) as the
solution to (40), where U and V are the matrices from the cost functional (38). If we again let
L(x) = Γ(x)CT (x)V −1 and K(x) = R−1BT (x)Π(x), the control using estimator compensation can
be formulated as

ẋ = A(x)x−B(x)K(xe)xe,
ẋe = A(xe)xe −B(xe)K(xe)xe + L(xe)(y − C(xe)xe),
y = C(x)x.

(57)

To show that the compensated system converges asymptotically to zero in a neighborhood about
the origin, we require the following remarks:

Remark 5.1. The block matrix
∥

∥

∥

∥

[

A B
C D

]∥

∥

∥

∥

≤
∥

∥

∥

∥

[

A 0
0 0

]∥

∥

∥

∥

+

∥

∥

∥

∥

[

0 B
0 0

]∥

∥

∥

∥

+

∥

∥

∥

∥

[

0 0
C 0

]∥

∥

∥

∥

+

∥

∥

∥

∥

[

0 0
0 D

]∥

∥

∥

∥

= ‖A‖+ ‖B‖+ ‖C‖+ ‖D‖

(58)

Remark 5.2. The matrix

H(x) =

[

A(x)−B(x)K(x) 0
0 A(x)− L(x)C(x)

]

has all eigenvalues with negative real part for all x such that the state-dependent controllability and
observability matrices have full rank. This follows directly from the eigenvalue separation property
[1], since at each x, H(x) is a constant block diagonal matrix and the blocks each have eigenvalues
with real part negative.

We are now able to prove the following theorem for the compensated system:

Theorem 5.1. Assume that the system

ẋ = f(x) +B(x)u

is such that f(x) and ∂f(x)
∂xj

(j = 1, . . . , n) are continuous in x for all ‖x‖ ≤ r̂, r̂ > 0, and that

f(x) can be written as f(x) = A(x)x (in SDC form). Assume further that A(x) and B(x) are
continuous. If A(x), B(x), and C(x) are chosen such that the pair (A(x), C(x)) is detectable and
(A(x), B(x)) is stabilizable for all x ∈ Ω ⊆ Br̂(0) (where Ω is a nonempty neighborhood of the
origin), then (x̂, ê) = (0, 0) for system (57) is locally asymptotically stable. Here, e = x− xe is the
error between the state and the state estimate in (57).
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Proof. Let r > 0 be the largest radius such that Br(0) ⊆ Ω. Using the mapping techniques described
in the preceding proofs, one has

A(x) = A0 +∆A(x),

B(x) = B0 +∆B(x),

C(x) = C0 +∆C(x),

K(x) = K0 +∆K(x),

L(x) = L0 +∆L(x),

with L0 = L(0) and ∆L(0) = 0 (etc.) for all of the matrices. The error between the actual state
and the estimated state satisfies the differential equation

ė(t) = ẋ(t)− ẋe(t),

with e(0) = x(0)− xe(0). We substitute the state and state estimator dynamics (57) for ẋ and ẋe
yielding

ė = A(x)x−A(xe)xe − (B(x)−B(xe))K(xe)xe
−L(xe)(C(x)x− C(xe)xe)

(59)

As in the theory of linear systems, the dynamics of both e(t) and x(t) are of interest. Hence, the
system to be considered is

˙[

x(t)
e(t)

]

,

with ẋ defined in (57) and ė given by (59). In order to proceed, it is convenient to put the system
into the form

˙[

x(t)
e(t)

]

=

[

H11 H12

H21 H22

] [

x(t)
e(t)

]

+

[

S11(x, xe) S12(x, xe)
S21(x, xe) S22(x, xe)

] [

x(t)
e(t)

]

. (60)

Rewriting the state dynamics with the given maps, we have that

ẋ = (A0 −B0K0)x+∆A(x)x−B0∆K(xe)xe −∆B(x)K(xe)xe.

To put this in the proper form, we add and subtract the terms B0∆K(xe)x and ∆B(x)K(xe)x
resulting in

ẋ = (A0 −B0K0)x+∆A(x)x−B0∆K(xe)x+B0∆K(xe)e
−∆B(x)K(xe)x+∆B(x)K(xe)e.

Thus,
H11 = A0 −B0K0,
S11(x, xe) = ∆A(x)−B0∆K(xe)−∆B(x)K(xe),
H12 = 0,
S12(x, xe) = B0∆K(xe) + ∆B(x)K(xe).

Now we seek to formulate the error dynamics in a suitable manner. Rewriting the error dynamics
with the given mappings yields

ė = (A0 − L0C0)e+∆A(x)x−∆A(xe)xe
−(∆B(x)−∆B(xe))K(xe)xe −∆L(xe)(∆C(x)x−∆C(xe)xe)
−∆L(xe)C0e− L0(∆C(x)x−∆C(xe)xe).
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We eliminate all of terms with xe multiples by adding and subtracting terms (if the term consists
of a matrix times xe we add and subtract that matrix times x). This leaves us with

ė = (A0 − L0C0)e+∆A(x)x+∆A(xe)e−∆A(xe)x
−(∆B(x)−∆B(xe))K(xe)x+ (∆B(x)−∆B(xe))K(xe)e
−∆L(xe)∆C(x)x+∆L(xe)∆C(xe)x−∆L(xe)∆C(xe)e
−∆L(xe)C0e− L0∆C(x)x+ L0∆C(xe)x− L0∆C(xe)e.

Thus, we have manipulated the error dynamics as desired and we have that

H21 = 0,
S21(x, xe) = ∆A(x)−∆A(xe)−∆B(x)K(xe) + ∆B(xe)K(xe)

−∆L(xe)∆C(x) + ∆L(xe)∆C(xe)− L0∆C(x)
+L0∆C(xe),

H22 = A0 − L0C0,
S22(x, xe) = ∆A(xe) + ∆B(x)K(xe)−∆B(xe)K(xe)

−∆L(xe)∆C(xe)−∆L(xe)C0 − L0∆C(xe).

Let

H̄ =

[

H11 H12

H21 H22

]

and

S̄(x, xe) =

[

S11(x, xe) S12(x, xe)
S21(x, xe) S22(x, xe)

]

.

By Remark 5.1, we can bound the matrix norm by

‖S̄(x, xe)‖ ≤ ‖S11(x, xe)‖+ ‖S12(x, xe)‖+ ‖S21(x, xe)‖+ ‖S22(x, xe)‖.

Then, taking the norm of each of these matrices, we find

‖S11(x, xe)‖ ≤ ‖∆A(x)‖+ ‖B0‖‖∆K(xe)‖+ ‖∆B(x)‖‖K(xe)‖,
‖S21(x, xe)‖ ≤ ‖∆A(x)‖+ ‖∆A(xe)‖+ ‖∆B(x)‖‖K(xe)‖

+‖∆B(xe)‖‖K(xe)‖+ ‖∆L(xe)‖‖∆C(x)‖
+‖∆L(xe)‖‖∆C(xe)‖+ ‖L0‖‖∆C(x)‖+ ‖L0‖‖∆C(xe)‖,

‖S12(x, xe)‖ ≤ ‖B0‖‖∆K(xe)‖+ ‖∆B(x)‖‖K(xe)‖,
‖S22(x, xe)‖ ≤ ‖∆A(xe)‖+ ‖∆B(x)‖‖K(xe)‖+ ‖∆B(xe)‖‖K(xe)‖

+‖∆L(xe)‖‖∆C(xe)‖+ ‖∆L(xe)‖‖C0‖
+‖L0‖‖∆C(xe)‖.

Therefore,

‖S̄(x, xe)‖ ≤ 2(‖∆A(x)‖+ ‖∆A(xe)‖) + 2‖B0‖‖∆K(xe)‖
+2‖K(xe)‖(2‖∆B(x)‖+ ‖∆B(xe)‖) + 2‖∆L(xe)‖‖∆C(xe)‖
+‖∆L(xe)‖‖∆C(x)‖+ ‖L0‖(2‖∆C(xe)‖+ ‖∆C(x)‖)
+‖C0‖‖∆L(xe)‖

= g(x, xe).

By definition of the incremental matrices, as x, xe → 0, g(x, xe) → 0. Thus, for any η > 0 there
exists an α ∈ (0, r) so that if z, ẑ ∈ Bα(0) then

‖S̄(z, ẑ)‖ ≤ η.
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Using the variations of constants formula with nonhomogeneous part

S̄(x, xe)

[

x
e

]

,

we have that the solution for the system (so long as it exists) is given by

[

x(t)
e(t)

]

= exp(H̄t)

[

x0

e0

]

+

∫ t

0
exp(H̄(t− s))S̄(x, xe)

[

x(s)
e(s)

]

ds.

If we assume that
[

x0

e0

]

∈ Bα/2(0)

then x0 ∈ Bα/2(0) and e0 ∈ Bα/2(0) (which implies that xe0 ∈ Bα(0)) so that

‖S̄(x, xe)‖ ≤ η.

Then, for as long as
∥

∥

∥

∥

[

x(t)
e(t)

]∥

∥

∥

∥

≤ α

2
,

the inequality
∥

∥

∥

∥

[

x(t)
e(t)

]∥

∥

∥

∥

≤ ‖ exp(H̄t)‖
∥

∥

∥

∥

[

x0

e0

]∥

∥

∥

∥

+ η

∫ t

0
‖ exp(H̄(t− s))‖

∥

∥

∥

∥

[

x(s)
e(s)

]∥

∥

∥

∥

ds

holds.
By the eigenvalue separation principle (see Remark 5.2), there exists a constant β > 0 such that

real

{

eigs

([

A0 −B0K0 0
0 A0 − L0C0

])}

< −β.

We know there also exists a G > 0 such that

‖ exp(H̄t)‖ ≤ G exp(−βt).

Let t̂ represent the amount of time that
[

x(t)
e(t)

]

∈ Bα/2(0).

Then, for t ∈ [0, t̂) the state and error dynamics are bounded by

∥

∥

∥

∥

[

x(t)
e(t)

]∥

∥

∥

∥

≤ G exp(−βt)
∥

∥

∥

∥

[

x0

e0

]∥

∥

∥

∥

+Gη

∫ t

0
exp(−β(t− s))

∥

∥

∥

∥

[

x(s)
e(s)

]∥

∥

∥

∥

ds.

Upon multiplying both sides by exp(βt), we have the relation

exp(βt)

∥

∥

∥

∥

[

x(t)
e(t)

]∥

∥

∥

∥

≤ G

∥

∥

∥

∥

[

x0

e0

]∥

∥

∥

∥

+Gη

∫ t

0
exp(βs)

∥

∥

∥

∥

[

x(t)
e(t)

]∥

∥

∥

∥

ds.

and invoking the Gronwall inequality we obtain
∥

∥

∥

∥

[

x(t)
e(t)

]∥

∥

∥

∥

exp(βt) ≤
∥

∥

∥

∥

[

x0

e0

]∥

∥

∥

∥

G exp(Gηt).
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Multiplying through each side by exp(−βt), we thus find that
∥

∥

∥

∥

[

x(t)
e(t)

]∥

∥

∥

∥

≤
∥

∥

∥

∥

[

x0

e0

]∥

∥

∥

∥

G exp(−(β −Gη)t) (61)

for all t ∈ [0, t̂). Recall that the bound η holds true so long as the trajectories of both x(t) and
xe(t) remain in an α−ball of the origin. Thus, we must also consider the bound placed upon xe(t).
Using the inequality

‖xe(t)‖ − ‖x(t)‖ ≤ ‖e(t)‖ ≤
∥

∥

∥

∥

[

x(t)
e(t)

]∥

∥

∥

∥

we obtain

‖xe(t)‖ ≤ ‖x(t)‖+
∥

∥

∥

∥

[

x0

e0

]∥

∥

∥

∥

G exp(−(β −Gη)t)

≤ 2

∥

∥

∥

∥

[

x0

e0

]∥

∥

∥

∥

G exp(−(β −Gη)t).

To this point, η was an arbitrary constant. However, if we set 0 < η < β/G and let ε ∈ (0, α]
(where α corresponds to this specific η) be given we find that so long as

[

x0

e0

]

∈ Bδ(0)

with δ = ε/(2Ĝ) (where Ĝ = max{1, G}), then
∥

∥

∥

∥

[

x(t)
e(t)

]∥

∥

∥

∥

≤ ε

2

and
‖xe(t)‖ ≤ ε

so that both bounds are for all t. Since the solution can be continued to the boundary (and hence,
to Br(0)) and the solution is bounded by (61) where β −Gη > 0, we can conclude that the origin
is asymptotically stable.

5.1 Compensation Example

This example is a simple demonstration of the SDRE technique for the control of a system using
state estimator based compensation. We demonstrate the effectiveness of the compensated system
by adding a control term to Example 4.1. Hence, the system is

ẋ1 = x2x
2
1 + x2 + u,

ẋ2 = −x3
1 − x1,

y = x1.

In SDC form, the above system, along with an SDRE compensator, can be rewritten as

ẋ =

[

0 1 + x2
1

−(1 + x2
1) 0

]

x+

[

1
0

]

u(xe)

ẋe =

[

0 1 + x2
e1

−(1 + x2
e1) 0

]

xe +

[

1
0

]

u(xe) + L(xe)(y − xe1)

y =
[

1 0
]

x.
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The state-dependent controllability matrix for this system is

M(x) =

[

1 0
0 −(1 + x2

1)

]

and the state-dependent observability matrix is

O(x) =

[

1 0
0 1 + x2

1

]

.

Since bothM(x) and O(x) have full rank throughout <2, the system is controllable and observable.
For the weighting matrices in (1) and (38) we use Q = 5I, R = 1, U = 10I, and V = 0.01.

The interpolation method provides a nice approach to approximate both Π(x) and Γ(x). The
state estimator mesh and controller mesh are the same, Mx = {−2 : 0.1 : 2}. We use an initial
condition of x0 = (1, 1)T for the state and xe0 = (0.5, 0.5)T for the estimated state and turn the
controller on at t = 2.0 seconds. Figures 12(a) and 12(b) depict the uncontrolled, controlled, and
estimated states for this example. We find that the estimator converges to the state quickly and the
controller stabilizes the system. Figure 12(c) is the state-space representation, while Figure 12(d)
is the error over the time interval and Figure 12(e) exhibits the control effort using state estimator
based compensation.
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Figure 12: Plots for Example 5.1, (a) state x1, (b) state x2, and (c) state-space representations for uncontrolled, controlled,
and estimated (xe(t)) systems, (d) norm of the error ‖e(t)‖2, and (e) compensated control for the system over the time span
0 ≤ t ≤ 5 with state initial condition x0 = (1, 1)T and state estimator initial condition xe0

= (0.5, 0.5)T .
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6 Conclusion

In this paper we have considered SDRE techniques for the general design and synthesis of feedback
controllers, estimators, and compensators of nonlinear systems. In particular, the SDRE methods
were formulated for cost functionals with constant weighting coefficients. The resulting closed loop
system was shown to be locally asymptotically stable and a local convergent result was obtained
for the nonlinear state estimator. In addition, two approaches were presented for the numerical
approximation of the solution to the SDRE for a large class of nonlinear problems. The numerical
approach is based on interpolation of SDRE solutions or controls over the state space. This approach
is very easy to implement and was shown to perform very well on a wide class of nonlinear systems.
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